关于高三数学教学计划模板汇总9篇

【领读网 www.Lingdu365.com】

高三数学教学计划 篇1

  一、指导思想

  依据《考试大纲》、《考试说明》、《教学大纲》,结合学生实际情况,准确定位起点,立足双基,夯实基础,瞄准高考,培养综合能力,努力提高课堂教学效益,从而全面提高数学教学质量。重点讲解和练习能够拿分的知识点。

  二、学科目标

  1、构建知识网络体系,通过案例教学提高学习兴趣。激励学生勇于探索提高运用辨证唯物主义观点分析问题、解决问题的能力。

  2.抓好一轮专题复习,研究考试说明,捕捉高考信息。本学期的教学任务主要为完成高三第一轮复习。指导学生参加零诊和一诊考试,完成学校下达的考试目标。作好模拟训练,增加高考经验,争取20xx年取得优异成绩。

  三、教学方法及其措施

  (一)制定科学的复习计划

  在认真研究教材、教纲和考纲,分析学生具体情况的基础上,根据教学和学生的实际科学的制定教学计划。

  1.时间分配 半期考试前基本完成必修教材的主体复习,年底前基本完成选修教材的复习,一月作考前适应性练习。

  2.知识有所侧重 注意向重点章节倾斜,做到重点知识重点复习。

  3.注意教学分层 结合学生不同层次的实际情况,讲解时要有所区别,在20班做好培优工作,在23班要紧盯可上生做好辅差工作,并在培养学生学习的积极性上下功夫,尽可能的调动学生的学习积极性,使每个学生有明显的不同程度的进步; 认真做好辅优工作,进行个别辅导,关注学生的思想变化,及时引导,让他们有足够的信心参加高考。分层施教,要求不同,争取每一个学生都有收获。

  4.整体复习与阶段复习计划相配套 整体复习计划精确到月,阶段复习计划应精确到详细列出每周的复习任务和进度

  5.适当调整,根据已完成的复习情况来调整计划,强化薄弱环节;或者根据考纲的变动而及时修订计划等

  6.确定模拟测试的时间,次数和分层辅导的安排等

  7. 钻研考纲和教材,研究近5年高考试卷。总结高考经验,指导好复习。

  (二)建立知识网络,确立教学专题

  在教学中要根据每个章节建立简明的知识网络,然后按照高考题型划分专题,如单项选择题,计算题,填空题等.在进行这些专题复习时,可以将历届高考题按以上专题进行归类,分析和研究,找出其特点和规律,然后进行讲解.在对各专题进行讲解时要尽可能从各个侧面去展开,要分析透彻,要真正把握解题技巧和规律

  (三)选好用好复习资料

  在高三复习中我们将以步步高为复习的主体资料,参照优化设计、三维设计等较辅资料组织教学工作,充分用好资料的基础学案落实,完善考点突破和高考真题冲浪等知识,是资料更加有利于学生全面掌握知识,了解高考考什么,怎么考等问题。

  (四)选好模拟练习题,训练学生解题能力

  选练习题时,决不不加选择地盲目使用外来资料和试题,避免重复和难题偏题的误导,选用正规的资料和历届高考试题就完全足够了,两周做一份综合练习题为最适宜.在模拟练习中将使复习过的内容进一步强化,重点与难点又一遍巩固,未讲到的或讲得不透的内容,可以通过综合练习使之得到弥补.而每做一份综合练习,不仅学生要全力以赴,老师也应该以高考的要求严格批阅和分析.要有针对性的培养学生的解题能力,如客观题在速度和正确率方面的强化训练,主观题要加强完整性和科学性表述的强化.同时要建立错题库,把做过的试卷及练习题进行整理,明白练习中出现错误的原因是什么,是对知识的理解不准确造成的,还是是审理不严造成的,有利于避免同样的错误的重犯. 教师广泛搜集资料,选择最适合学生的习题进行练习,每练必改,每考必评。增强训练的针对性,收到更大效果。

  另外,在练习中千万要注意避免难题过多,起点过高 ;做练习题要重质量而不是数量,也就是做一题要懂一题而且要会一类,通过做题掌握知识,提高能力,增强信心,找出差距,在做题过程中,重要是弄清楚各类题目的解题思路,掌握基本的解题方法。

  认真搞好练习和试卷讲评,每次训练测试全批全改,分数登记入册。有练必改,有考必评,练考必讲。引导学生去分析每一个问题及原因,考后及时巩固

  (五)认真备课,有的放矢

  由于课堂复习容量的增大,要在重点问题多花时间,集中精力解决学生困惑的问题,减少不必要的环节,少做无用功;既不能满堂灌也不能大撒手,每堂课都要认真研究学生的实际情况,精讲精练,同时要发挥学生的主体地位,让学生多参与解题活动和教学过程,启迪思维,点拨要害.教师一定要把课本和资料认真地分析比较和联系归纳,这样才能清楚地启发学生。备课中对每节内容、重点、难点、疑点、材料的选择,怎样呈现给学生要进行充分研究。教学中要及时反馈,根据学生掌握情况不断改进和修正教学方案。教师要多作题,多参考资料。把握高考方向,提高课堂效率

  最后,希望小编整理的高三数学上学期教学工作计划对您有所帮助,祝同学们学习进步。

高三数学教学计划 篇2

  一、考情分析

  高考命题是以《考试说明》为依据的,高三数学复习是要以《考试说明》为指导的,但是,《考试说明》可能要等到下一学期中途才能出台。高三复习工作是等不得的。9月4日下午在教研室主持召开的高三数学复习研讨会上,也没能有一个明确的复习要求。这就要求我们各位授课教师结合12届周边省份如山东、江苏、海南、上海等省市高考试题、对照题型示例,仔细揣摩,去研究课程标准中的各项要求的具体落脚点,把握试题改革的新趋势。为了使本届高三数学的复习工作更加有效,在内容取舍上,应以考试内容为准,不随意扩充、拓宽和加深;注意各知识点的难度控制。根据学科的特点,结合本校数学教学的实际情况制定以下复习计划。

  二、学情分析

  我今年教授三个班的数学教学,原来带两个理科班:(21)班和(22)班,进入高三以后,本届学生是第一届课改生,在高一、高二阶段,无论是教师或学生,思想认识都不到位,学习抓得不紧,尤其课时不足,只重进度不重效果,大部分学生的基础知识、基本方法掌握不好,学习数学的信心和兴趣不足。并且,学生的知识回生太快,有明显优势的学生较少,主动学习数学的习惯不强.还有不少数学是缺腿的优生。

  经过与同组的其他老师商讨后,我打算分三个阶段来完成13届高三数学的复习工作。

  首先,理科班在暑期补课期间到九月末完成高三选修2-3及选修2-2第二章定积分部分、合情推理中的数学归纳法等内容的教学。然后进入高三第一轮复习,文科班同学九月份开学后直接进入高三第一轮复习:根据往届学生复习过程中出现的问题,本届学生可能会出现同样的问题

  1、只跟不走

  部分学生认为高考复习就是把高中的数学课的内容再重新上一遍,所以,同样只要上课听牢,作业做好就可以了。虽然复习课堂上听的很认真,作业做的也很认真,但从来没有去想听了什么,做了什么,自然提高不大,碰到新情景的问题时有解决不了。我们认为主动是学习成绩提高的保证。外因可起重要作用,但它必须通过内因才能起作用。只有学生主动起来,对每一堂课都有一种需求的心态走进来,才有可能真正取得提高,那么如何引导学生在复习中不只是跟在后面,而是走到前面呢?我的对策是在调动学生学习积极性提高他们的学习兴趣的同时,帮助他们养成在课前几分钟自觉地对本堂课的要点进行梳理的习惯,或者把本堂课的要点梳理设计成练习,课前发给他们,或者利用多媒体投影仪展示,让他们去回顾、思考,可以说课前对基础知识的梳理与强化是学习的生命。

  2、只看不写

  一些基础相对较好或思维较快但比较粗糙的同学,往往眼高手低,喜欢看看题目,稍微动动笔,答案一写了事。尤其我们(22)班学生多数有这个毛病。加强分析思考,这本身是件好事,但过了头,就成了坏事。平时解题只是写个简单答案,不注意解题步骤和过程的规范,导致的结果就是一些细节地方考虑不周全,考试中扣分过多,甚至碰到很熟悉的题目,考试中没了思路。所以我们的对策是同学们平时的练习和作业中必须要有完整的书写步骤,提高表达水平。高考中,只有把你的思维通过解答完整反映到卷面上,阅卷老师才有给满分的可能。

  3、只练不想

  只埋头拉车,不抬头看路。高考复习资料五花八门,这些同学在复习中埋头苦练,拼命做题,往往是事倍功半。我们觉得在复习中应边练边想,必要的训练是必不可少的,不要搞题海战术,而要强化自我总结。学习数学离不开做题,但要精,并在做题后要认真反思、分析,总结出一些问题的规律,并找出自己存在的问题,真正掌握解题的思维方式,内化为自己的能力。努力争取达到做一题,得一法,会一类,通一片的收获。

  三、指导思想

  抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。

  研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

  四、目标

  1、高考平均分力求达90分;2、解决优生的数学缺腿问题;3、培养尖子生突破120分.

  五、具体措施

  根据以上分析我提出第一轮教学和复习建议:

  (一)同备课组老师之间加强研究

  1、研究《课程标准》、参照周边省份20xx年《考试说明》,明确复习教学要求。

  2、研究高中数学教材。处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

  3、研究12年新课程地区高考试题,把握考试趋势。特别是山东卷、全国卷、上海卷以及广东、江苏、海南、宁夏等课改地区的试卷。

  4、研究高考信息,关注考试动向。及时了解13高考动态,适时调整复习方案。

  5、研究本校数学教学情况、尤其是本届高三学生的学情。有的放矢地制订切实可行的校本复习教学计划。

  (二)重视课本,夯实基础,建立良好知识结构和认知结构体系

  课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。只有吃透课本上的例题、习题,才能全面、系统地掌握基础知、基本技能和基本方法,构建数学的知识网络,以不变应万变。在求活、求新、求变的命题的指导思想下,高考数学试题虽然不可能考查单纯背诵、记忆的内容,也不会考查课本上的原题,但对高考试卷进行分析就不难发现,许多题目都能在课本上找到影子,不少高考题就是将课本题目进行引申、拓宽和变化,高考试题千变万化,异彩纷呈,但无论怎样变化、创新,都是基本数学问题的组合。所以,对基本数学问题的认识,基本数学问题解法模式的研究,基本问题所涉及的数学知识、技能、思想方法的理解,乃是数学复习课的重心。多年的教学实践,使我们深刻体会到:基础题、中档题不需要题海,高档题题海也是不能解决的。在第一轮复习中,切忌高起点、高强度、高要求,所谓居高临下,往往投入很大,收效甚微,甚至使学生丧失学习数学的兴趣和信心。要引导学生重视基础,切实抓好三基(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。在复习过程中自觉地将新知识及时纳入已有的知识系统中去,融代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。

  (三)提升能力,适度创新

  考查能力是高考的重点和永恒主题。教育部已明确指出高考从以知识立意命题转向以能力立意命题。新大纲提出能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识,包括提出问题、分析问题和解决问题的能力,数学探究能力、数学建模能力、数学交流能力、数学实践能力、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,能够对客观事物中的数量关系和数学模式做出思考和判断。其中理性思维能力是数学能力的核心,而分析问题和解决问题的能力(实践能力)是数学的一种综合能力,需将思维、运算、空间想象有机结合去完成的一种复合型能力,是思维能力的更高层次。逻辑思维能力在解题中表现为:①领会题意、明确目标;②寻找解题方向和有效解题步骤;③正确推理和运算,表述解题过程。能力的培养首先应重视知识与技能的学习、思想方法的渗透。知识与技能的掌握有助于能力的提高,思想方法的掌握有助于广泛迁移的实现。实践能力在考试中表现为解答应用问题。创新是指在新的问题情境中,综合灵活地应用所学知识、思想和方法,进行独立思考、探索和研究,选择有效的方法和手段分析和处理信息,提出解决问题的思路,创造性地解决问题。创新意识是理性思维高层次表现,对数学问题的观察、猜测、抽象、概括、证明,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融汇的程度越高,显示出的创新意识也就越强。

  (四)强化数学思想方法

  数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。注重对数学思想方法的考查也是高考数学命题的显著特点之一。数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活。数学思想方法是数学的精髓,是适用于数学全部内容的通法,对于数学思想和方法的考查必然要与数学知识考查结合进行。只有运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力。因此,在各个阶段的复习中,要结合具体问题不失时机地运用、渗透数学思想方法,对其进行多次再现、不断深化,逐步内化为自己能力的组成部分,实现知识型向能力型的转化。常用的数学思想方法可分为三类:一是具体操作方法,如配方法、消元法、换元法、迭代法、裂项相消法、错位相减法、特值法、待定系数法、同一法等;二是逻辑推理方法,如综合法、分析法、反证法、类比法、探索法、解析法、归纳法等;三是具有宏观指导意义的数学思想方法,如函数与方程的思想方法、数形结合的思想方法、分类与整合的思想方法、化归与转化的思想方法等。

  在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。

高三数学教学计划 篇3

  一、学生基本情况:

  175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。

  二、高考要求

  1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。

  2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。

  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。

  4、注重应用题的考查,20xx年文科试题应用有3道题,共28分。

  5、注重学生创新意识的考查,注重学生创造能力的考查。

  三、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:

  基础练习典型例题作业课后检查

  (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。

  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到12种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。

  (3)作业:本节课的基础问题,典型问题及下一节课的预习题。

  (4)课后检查;重点检查改错本及复习资料上的作业。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5、发挥集体的力量,共同培养尖子学生。

  6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。

  四、教学进度详细安排:

  1、函数(共11课时)(8月9日结束)

  (1)函数的单调性(2课时)

  (2)函数的图象(2课时)

  (3)二次函数(2课时)

  (4)函数的奇偶性(1课时)

  (5)函数章考(4课时)

  2、三角函数(共30课时)(9月15日结束)

  (1)任意角的三角函数(1)

  (2)同角三角函数的基本关系(1)

  (3)诱导公式(1)

  (4)三角函数的图象(2)

  (5)三角函数的定义域、值域和最值(2)

  (6)三角函数的奇偶性、单调性(1)

  (7)三角函数的周期性(1)

  (8)两角和差的正、余弦公式(1)

  (9)倍角公式、万能公式(2)

  (10)和积互化公式(1)

  (11)三角函数的化简与求值(3)

  (12)三角恒等式的证明(1)

  (13)条件恒等式的证明(1)

  (14)三角形的求值与证明(3)

  (15)解斜三角形(2)

  (16)三角不等式(1)

  (17)三角函数的最值(2)

  (18)反三角函数的概念、图像及性质(1)

  (19)反三角函数的运算(2)

  (20)最简单的三角方程(1)

  (21)单元考试(4)

  3、不等式(共24课时)(10月13日)

  (1)不等式的概念与性质(1课时)

  (2)不等式的证明(比较法)(1课时)

  (3)不等式的证明(分析法、综合法)(1课时)

  (4)应用均值不等式证明不等式(2课时)

  (5)不等式的证明(反证法、数学归纳法)(3课时)

  (6)一元一次不等式、一元二次不等式的解法(1课时)

  (7)分式不等式的解法(1课时)

  (8)无理不等式的解法(1课时)

  (9)含绝对值不等式的解法(1课时)

  (10)指对不等式的解法(2课时)

  (11)含参不等式的解法(3课时)

  (12)均值不等式的应用(2)

  (13)应用不等式求范围(2)

  (14)章考(4课时)

  (15)月考及讲评(4天)

  4、数列、极限、数学归纳法(共20课时)(11月13日)

  (1)数列的通项(2课时)

  (2)等差数列(2课时)

  (3)等比数列(2课时)

  (4)综合运用(2课时)

  (5)数列的求和(3课时)

  (6)数列的极限(1课时)

  (7)数学归纳法(4课时)

  (8)归纳、猜想、证明(1课时)

  (9)章考(3课时)

  (10)月考及讲评(4天)

  5、复数(共15课时)(11月27日)

  (1)复数的概念(2课时)

  (2)复数的代数形式及运算(2课时)

  (3)复数的三角形式(1课时)

  (4)复数的三角形式的运算(2课时)

  (5)复数的加减法的几何意义(1课时)

  (6)复数的乘除法的几何意义(2课时)

  (7)复数集上的方程(2课时)

  (8)复数集上的方程(1课时)

  (9)章考(2课时)

  6、排列、组合、二项式定理(共11课时)(12月1日)

  (1)两个基本原理(1课时)

  (2)排列、组合数公式(1)

  (3)排列应用题(1)

  (4)组合应用题(1)

  (5)排列、组合综合应用题(2)

  (6)二项式定理(3)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  7、直线与平面(共20课时)(12月24日)

  (1)平面及其基本性质(1课时)

  (2)空间的两条直线(1课时)

  (3)直线与平面(1课时)

  (4)平面与平面(1课时)

  (5)三垂线定理及逆定理(2课时)

  (6)平行间的转化(2课时)

  (7)垂直间的转化(2课时)

  (8)空间角(3课时)

  (9)空间距离(2课时)

  (10)章考(3课时)

  (11)月考及讲评(4天)

  8、多面体与旋转体(共7课时)(12月31日)

  (1)柱体(1课时)

  (2)锥体(1课时)

  (3)台体(1课时)

  (4)球(1课时)

  (5)侧面张开图(1课时)

  (6)折叠问题(1课时)

  (7)体积问题(1课时)

  (8)自测

  9、直线与圆(共10课时)(1月12日)

  (1)向线段与定比分点(1)

  (2)直线方程的几种形式(2)

  (3)两直线的位置关系(1)

  (4)对称为题(1)

  (5)圆的方程(1)

  (6)直线与圆的位置关系(2)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  10、圆锥曲线(共21课时)(2月4日)

  (1)充要条件(1)

  (2)椭圆(1)

  (3)双曲线(1)

  (4)抛物线(1)

  (5)坐标平移(2)

  (6)弦问题(4)

  (7)轨迹的求法(4)

  (8)最值问题(2)

  (9)取值范围问题(2)

  (10)章考(3课时)

  11、参数方程、极坐标(共5课时)(2月10日)

  (1)直线的参数方程及应用(2)

  (2)圆锥曲线的参数方程(1)

  (3)直线与圆的极坐标方程(2)

  五、周练安排

  1、出题安排

  (1)第2、5、8、11、14、17、20周

  (2)第3、6、9、12、15、18、21周

  (3)第4、7、10、13、16、19、22周

  2、注意事项

  每周星期一以前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  六、过关题、典型题

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列

  (4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每章结束以前一周出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  七、章考命题负责人

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列(4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每次考前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  八、月考命题负责人

  1、出题安排

  (1)第一次月考

  (2)第二次月考

  (3)第三次月考

  (4)第四次月考

  (5)第五次月考

  2、每次月考前一周出好试题,交备课组讨论,负责定稿交好试卷。

高三数学教学计划 篇4

  这学期,可以说大多数的学生的成绩基本定型,但是仍然还有一部分学生有可能在原来的基础上,进一步提高自己的数学成绩,因此本学期不能因为到了高三下学期就对自己和学生松懈。根据学科的特点,结合我校数学教学的实际情况制定以下教学计划。

  一、教学内容

  高中数学所有内容:抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。

  研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。

  研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

  二、学情分析:

  我今年教授两个班的数学:(20)班和(23)班,经过与同组的其他老师商讨后,打算第一轮20xx年2月初;第二轮从20xx年2月底至5月上旬结束;第三轮从20xx年5月上旬至5月底结束。

  三、具体措施

  (一)同备课组老师之间加强研究

  1、研究《课程标准》、参照周边省份20xx年《考试说明》,明确复习教学要求。

  2、研究高中数学教材。处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

  3、研究xx年新课程地区高考试题,把握考试趋势。特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。

  4、研究高考信息,关注考试动向。及时了解xx高考动态,适时调整复习方案。

  5、研究本校数学教学情况、尤其是本届高三学生的学情。有的放矢地制订切实可行的校本复习教学计划。

  (二)重视课本,夯实基础,建立良好知识结构和认知结构体系

  课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

  (三)提升能力,适度创新

  考查能力是高考的重点和永恒主题。教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。

  (四)强化数学思想方法

  数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。注重对数学思想方法的考查也是高考数学命题的显著特点之一。数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活。

  在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。

  (五)强化思维过程,提高解题质量

  数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。

  (六)认真总结每一次测试的得失,提高试卷的讲评效果

  试卷讲评要有科学性、针对性、辐射性。讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。

  根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。

  四、教学要求:

  第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的'针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用“配方法、待定系数法、数形结合,分类讨论,换元”等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。

  第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。该阶段需要解决的问题是:

  1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。

  2、检查复习的知识疏漏点和解题易错点,探索解题的规律。

  3、检验知识网络的形成过程。

  4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。

  五、在有序做好复习工作的同时注意一下几点:

  (1)从班级实际出发,我要帮助学生切实做到对基础训练限时完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写“像雾像雨又像风”的学生要加强指导,确保基本得分。

  (2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。

  (3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。

  (4)做到“有练必改,有改必评,有评必纠”。

  (5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。班级是一个集体,我们的目标是“水涨船高”,而不是“水落石出”。

  (6)教研组团队合作。虚心学习别人的优点,博采众长,对工作是很有利的。校长一直强调团队精神,所以我们要在竞争的基础上合作,合作的基础上竞争,合作也是我校的优良传统。我们几位老师准备做到一盘棋的思想,有问题一起分析解决,复习资料要共享。在工作中,教师间的合作就显得尤为重要。

  (7)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;让更多的学生喜欢数学。力争以“严、实、精、活”的教风带出“勤、实、悟、活”的学风。

高三数学教学计划 篇5

  一、指导思想

  以学校和高三年部的教学计划为目标,深入钻研教材及总复习大纲,依靠集体智慧处理教研、教改资源及多媒体信息。根据我校实际,合理运用现代教学手段、技术,提高课堂效率,全面提高数学教学质量,以确证学生在明年高考中取得好的成绩。

  二、目标要求

  1.深入钻练教材,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

  2.本学期重点为高考第一轮复习,为明年的下一轮复习以及高考打基础。

  3.继续培养学生的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

  4.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,最终提升学生的整体解题能力。

  三、教材分析

  本期教材:高中全部必修、选修教材及第一轮复习资料。

  教辅资料:《优化探究》。

  四、具体方法措施

  1.高质量备课,参考网上的课件资料,结合我校学生实际,充分发挥全组老师的集体智慧,确保每节课件都是高质量的。统一教案、统一课件。

  2.高效率的上好每节课,真正体现学生主体、教师主导作用。保证练的时间,运用多媒资源,让学生对知识充分理解。

  3.狠抓作业批改、讲评,教材作业、练习课内完成,课外作业认真批改、讲评。一题多思多解,提炼思想方法,提升学生解题能力。

  4.认真落实月考,考前作好指导复习,试卷讲评起到补缺长智的作用。

  5.继续抓紧培优补差工作,让优等生开阔知识视野,丰富各种技能,达到思维多角度,解题多途径,效果多功能之目的。让弱科学生基础打牢,技能提升,方法灵活得当,收到弱科不弱之效果。

高三数学教学计划 篇6

  一、指导思想

  依据《考试大纲》、《考试说明》、《教学大纲》,结合学生实际情况,准确定位起点,立足双基,夯实基础,瞄准高考,培养综合能力,努力提高课堂教学效益,从而全面提高数学教学质量。重点讲解和练习能够拿分的知识点。

  二、学科目标

  1、构建知识网络体系,通过案例教学提高学习兴趣。

  2、抓好一轮专题复习,研究考试说明,捕捉高考信息。本学期的教学任务主要为完成高三第一轮复习。作好模拟训练,增加高考经验,争取20xx年取得优异成绩。

  三、教学方法及其措施

  (一)制定科学的复习计划

  在认真研究教材、教纲和考纲,分析学生具体情况的基础上,根据教学和学生的实际科学的制定教学计划。

  1、时间分配。半期考试前基本完成必修教材的主体复习,年底前基本完成选修教材的复习,一月作考前适应性练习。

  2、知识有所侧重。注意向重点章节倾斜,做到重点知识重点复习。

  3、注意教学分层。结合学生不同层次的实际情况,讲解时要有所区别,在99班做好培优工作,并在紧盯可上生做好辅差工作,并在培养学生学习的积极性上下功夫,尽可能的调动学生的学习积极性,使每个学生有明显的不同程度的进步; 认真做好辅优工作,进行个别辅导,关注学生的思想变化,及时引导,让他们有足够的信心参加高考。分层施教,要求不同,争取每一个学生都有收获。

  4、整体复习与阶段复习计划相配套。整体复习计划精确到月,阶段复习计划应精确到详细列出每周的复习任务和进度。

  5、适当调整,根据已完成的复习情况来调整计划,强化薄弱环节;或者根据考纲的变动而及时修订计划等

  6、确定模拟测试的时间,次数和分层辅导的安排等

  7、钻研考纲和教材,研究近5年高考试卷。总结高考经验,指导好复习

  (二)建立知识网络,确立教学专题

  在教学中要根据每个章节建立简明的知识网络,然后按照高考题型划分专题,如"单项选择题","计算题",填空题等.在进行这些专题复习时,可以将历届高考题按以上专题进行归类,分析和研究,找出其特点和规律,然后进行讲解.在对各专题进行讲解时要尽可能从各个侧面去展开,要分析透彻,要真正把握解题技巧和规律

  (三)选好用好复习资料

  高三数学教学计划

  在高三复习中我们将以步步高为复习的主体资料,参照优化设计等较辅资料组织教学工作,充分用好资料的基础学案落实,完善考点突破和高考真题冲浪等知识,是资料更加有利于学生全面掌握知识,了解高考考什么,怎么考等问题。

  (四)选好模拟练习题,训练学生解题能力

  选练习题时,决不不加选择地盲目使用外来资料和试题,避免重复和难题偏题的误导,选用正规的资料和历届高考试题就完全足够了,两周做一份综合练习题为最适宜.在模拟练习中将使复习过的内容进一步强化,重点与难点又一遍巩固,未讲到的或讲得不透的内容,可以通过综合练习使之得到弥补.而每做一份综合练习,不仅学生要全力以赴,老师也应该以高考的要求严格批阅和分析.

  要有针对性的培养学生的解题能力,如客观题在速度和正确率方面的强化训练,主观题要加强完整性和科学性表述的强化.同时要建立错题库,把做过的试卷及练习题进行整理,明白练习中出现错误的原因是什么,是对知识的理解不准确造成的,还是是审理不严造成的,有利于避免同样的错误的重犯.。

  (五)认真备课,有的放矢

  由于课堂复习容量的增大,要在重点问题多花时间,集中精力解决学生困惑的问题,减少不必要的环节,少做无用功;既不能"满堂灌"也不能"大撒手",每堂课都要认真研究学生的实际情况,精讲精练,同时要发挥学生的主体地位,让学生多参与解题活动和教学过程,启迪思维,点拨要害.备课中对每节内容、重点、难点、疑点、材料的选择,怎样呈现给学生要进行充分研究。教学中要及时反馈,根据学生掌握情况不断改进和修正教学方案。教师要多作题,多参考资料。把握高考方向,提高课堂效率

高三数学教学计划 篇7

  一、学生基本情况:

  175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。

  二、高考要求

  1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。

  2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。

  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。

  4、注重应用题的考查,20xx年文科试题应用有3道题,共28分。

  5、注重学生创新意识的考查,注重学生创造能力的考查。

  三、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:

  基础练习典型例题作业课后检查

  (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。

  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到12种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。

  (3)作业:本节课的基础问题,典型问题及下一节课的预习题。

  (4)课后检查;重点检查改错本及复习资料上的作业。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5、发挥集体的力量,共同培养尖子学生。

  6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。

  四、教学进度详细安排:

  1、函数(共11课时)(8月9日结束)

  (1)函数的单调性(2课时)

  (2)函数的图象(2课时)

  (3)二次函数(2课时)

  (4)函数的奇偶性(1课时)

  (5)函数章考(4课时)

  2、三角函数(共30课时)(9月15日结束)

  (1)任意角的三角函数(1)

  (2)同角三角函数的基本关系(1)

  (3)诱导公式(1)

  (4)三角函数的图象(2)

  (5)三角函数的定义域、值域和最值(2)

  (6)三角函数的奇偶性、单调性(1)

  (7)三角函数的周期性(1)

  (8)两角和差的正、余弦公式(1)

  (9)倍角公式、万能公式(2)

  (10)和积互化公式(1)

  (11)三角函数的化简与求值(3)

  (12)三角恒等式的证明(1)

  (13)条件恒等式的证明(1)

  (14)三角形的求值与证明(3)

  (15)解斜三角形(2)

  (16)三角不等式(1)

  (17)三角函数的最值(2)

  (18)反三角函数的概念、图像及性质(1)

  (19)反三角函数的运算(2)

  (20)最简单的三角方程(1)

  (21)单元考试(4)

  3、不等式(共24课时)(10月13日)

  (1)不等式的概念与性质(1课时)

  (2)不等式的证明(比较法)(1课时)

  (3)不等式的证明(分析法、综合法)(1课时)

  (4)应用均值不等式证明不等式(2课时)

  (5)不等式的证明(反证法、数学归纳法)(3课时)

  (6)一元一次不等式、一元二次不等式的解法(1课时)

  (7)分式不等式的解法(1课时)

  (8)无理不等式的解法(1课时)

  (9)含绝对值不等式的解法(1课时)

  (10)指对不等式的解法(2课时)

  (11)含参不等式的解法(3课时)

  (12)均值不等式的应用(2)

  (13)应用不等式求范围(2)

  (14)章考(4课时)

  (15)月考及讲评(4天)

  4、数列、极限、数学归纳法(共20课时)(11月13日)

  (1)数列的通项(2课时)

  (2)等差数列(2课时)

  (3)等比数列(2课时)

  (4)综合运用(2课时)

  (5)数列的求和(3课时)

  (6)数列的极限(1课时)

  (7)数学归纳法(4课时)

  (8)归纳、猜想、证明(1课时)

  (9)章考(3课时)

  (10)月考及讲评(4天)

  5、复数(共15课时)(11月27日)

  (1)复数的概念(2课时)

  (2)复数的代数形式及运算(2课时)

  (3)复数的三角形式(1课时)

  (4)复数的三角形式的运算(2课时)

  (5)复数的加减法的几何意义(1课时)

  (6)复数的乘除法的几何意义(2课时)

  (7)复数集上的方程(2课时)

  (8)复数集上的方程(1课时)

  (9)章考(2课时)

  6、排列、组合、二项式定理(共11课时)(12月1日)

  (1)两个基本原理(1课时)

  (2)排列、组合数公式(1)

  (3)排列应用题(1)

  (4)组合应用题(1)

  (5)排列、组合综合应用题(2)

  (6)二项式定理(3)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  7、直线与平面(共20课时)(12月24日)

  (1)平面及其基本性质(1课时)

  (2)空间的两条直线(1课时)

  (3)直线与平面(1课时)

  (4)平面与平面(1课时)

  (5)三垂线定理及逆定理(2课时)

  (6)平行间的转化(2课时)

  (7)垂直间的转化(2课时)

  (8)空间角(3课时)

  (9)空间距离(2课时)

  (10)章考(3课时)

  (11)月考及讲评(4天)

  8、多面体与旋转体(共7课时)(12月31日)

  (1)柱体(1课时)

  (2)锥体(1课时)

  (3)台体(1课时)

  (4)球(1课时)

  (5)侧面张开图(1课时)

  (6)折叠问题(1课时)

  (7)体积问题(1课时)

  (8)自测

  9、直线与圆(共10课时)(1月12日)

  (1)向线段与定比分点(1)

  (2)直线方程的几种形式(2)

  (3)两直线的位置关系(1)

  (4)对称为题(1)

  (5)圆的方程(1)

  (6)直线与圆的位置关系(2)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  10、圆锥曲线(共21课时)(2月4日)

  (1)充要条件(1)

  (2)椭圆(1)

  (3)双曲线(1)

  (4)抛物线(1)

  (5)坐标平移(2)

  (6)弦问题(4)

  (7)轨迹的求法(4)

  (8)最值问题(2)

  (9)取值范围问题(2)

  (10)章考(3课时)

  11、参数方程、极坐标(共5课时)(2月10日)

  (1)直线的参数方程及应用(2)

  (2)圆锥曲线的参数方程(1)

  (3)直线与圆的极坐标方程(2)

  五、周练安排

  1、出题安排

  (1)第2、5、8、11、14、17、20周

  (2)第3、6、9、12、15、18、21周

  (3)第4、7、10、13、16、19、22周

  2、注意事项

  每周星期一以前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  六、过关题、典型题

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列

  (4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每章结束以前一周出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  七、章考命题负责人

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列(4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每次考前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  八、月考命题负责人

  1、出题安排

  (1)第一次月考

  (2)第二次月考

  (3)第三次月考

  (4)第四次月考

  (5)第五次月考

  2、每次月考前一周出好试题,交备课组讨论,负责定稿交好试卷。

高三数学教学计划 篇8

  一、学生基本情况:

  175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。

  二、高考要求

  1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。

  2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。

  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。

  4、注重应用题的考查,20xx年文科试题应用有3道题,共28分。

  5、注重学生创新意识的考查,注重学生创造能力的考查。

  三、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:

  基础练习典型例题作业课后检查

  (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。

  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到12种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。

  (3)作业:本节课的基础问题,典型问题及下一节课的预习题。

  (4)课后检查;重点检查改错本及复习资料上的作业。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5、发挥集体的力量,共同培养尖子学生。

  6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。

  四、教学进度详细安排:

  1、函数(共11课时)(8月9日结束)

  (1)函数的单调性(2课时)

  (2)函数的图象(2课时)

  (3)二次函数(2课时)

  (4)函数的奇偶性(1课时)

  (5)函数章考(4课时)

  2、三角函数(共30课时)(9月15日结束)

  (1)任意角的三角函数(1)

  (2)同角三角函数的基本关系(1)

  (3)诱导公式(1)

  (4)三角函数的图象(2)

  (5)三角函数的定义域、值域和最值(2)

  (6)三角函数的奇偶性、单调性(1)

  (7)三角函数的周期性(1)

  (8)两角和差的正、余弦公式(1)

  (9)倍角公式、万能公式(2)

  (10)和积互化公式(1)

  (11)三角函数的化简与求值(3)

  (12)三角恒等式的证明(1)

  (13)条件恒等式的证明(1)

  (14)三角形的求值与证明(3)

  (15)解斜三角形(2)

  (16)三角不等式(1)

  (17)三角函数的最值(2)

  (18)反三角函数的概念、图像及性质(1)

  (19)反三角函数的运算(2)

  (20)最简单的三角方程(1)

  (21)单元考试(4)

  3、不等式(共24课时)(10月13日)

  (1)不等式的概念与性质(1课时)

  (2)不等式的证明(比较法)(1课时)

  (3)不等式的证明(分析法、综合法)(1课时)

  (4)应用均值不等式证明不等式(2课时)

  (5)不等式的证明(反证法、数学归纳法)(3课时)

  (6)一元一次不等式、一元二次不等式的解法(1课时)

  (7)分式不等式的解法(1课时)

  (8)无理不等式的解法(1课时)

  (9)含绝对值不等式的解法(1课时)

  (10)指对不等式的解法(2课时)

  (11)含参不等式的解法(3课时)

  (12)均值不等式的应用(2)

  (13)应用不等式求范围(2)

  (14)章考(4课时)

  (15)月考及讲评(4天)

  4、数列、极限、数学归纳法(共20课时)(11月13日)

  (1)数列的通项(2课时)

  (2)等差数列(2课时)

  (3)等比数列(2课时)

  (4)综合运用(2课时)

  (5)数列的求和(3课时)

  (6)数列的极限(1课时)

  (7)数学归纳法(4课时)

  (8)归纳、猜想、证明(1课时)

  (9)章考(3课时)

  (10)月考及讲评(4天)

  5、复数(共15课时)(11月27日)

  (1)复数的概念(2课时)

  (2)复数的代数形式及运算(2课时)

  (3)复数的三角形式(1课时)

  (4)复数的三角形式的运算(2课时)

  (5)复数的加减法的几何意义(1课时)

  (6)复数的乘除法的几何意义(2课时)

  (7)复数集上的方程(2课时)

  (8)复数集上的方程(1课时)

  (9)章考(2课时)

  6、排列、组合、二项式定理(共11课时)(12月1日)

  (1)两个基本原理(1课时)

  (2)排列、组合数公式(1)

  (3)排列应用题(1)

  (4)组合应用题(1)

  (5)排列、组合综合应用题(2)

  (6)二项式定理(3)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  7、直线与平面(共20课时)(12月24日)

  (1)平面及其基本性质(1课时)

  (2)空间的两条直线(1课时)

  (3)直线与平面(1课时)

  (4)平面与平面(1课时)

  (5)三垂线定理及逆定理(2课时)

  (6)平行间的转化(2课时)

  (7)垂直间的转化(2课时)

  (8)空间角(3课时)

  (9)空间距离(2课时)

  (10)章考(3课时)

  (11)月考及讲评(4天)

  8、多面体与旋转体(共7课时)(12月31日)

  (1)柱体(1课时)

  (2)锥体(1课时)

  (3)台体(1课时)

  (4)球(1课时)

  (5)侧面张开图(1课时)

  (6)折叠问题(1课时)

  (7)体积问题(1课时)

  (8)自测

  9、直线与圆(共10课时)(1月12日)

  (1)向线段与定比分点(1)

  (2)直线方程的几种形式(2)

  (3)两直线的位置关系(1)

  (4)对称为题(1)

  (5)圆的方程(1)

  (6)直线与圆的位置关系(2)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  10、圆锥曲线(共21课时)(2月4日)

  (1)充要条件(1)

  (2)椭圆(1)

  (3)双曲线(1)

  (4)抛物线(1)

  (5)坐标平移(2)

  (6)弦问题(4)

  (7)轨迹的求法(4)

  (8)最值问题(2)

  (9)取值范围问题(2)

  (10)章考(3课时)

  11、参数方程、极坐标(共5课时)(2月10日)

  (1)直线的参数方程及应用(2)

  (2)圆锥曲线的参数方程(1)

  (3)直线与圆的极坐标方程(2)

  五、周练安排

  1、出题安排

  (1)第2、5、8、11、14、17、20周

  (2)第3、6、9、12、15、18、21周

  (3)第4、7、10、13、16、19、22周

  2、注意事项

  每周星期一以前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  六、过关题、典型题

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列

  (4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每章结束以前一周出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  七、章考命题负责人

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列(4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每次考前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  八、月考命题负责人

  1、出题安排

  (1)第一次月考

  (2)第二次月考

  (3)第三次月考

  (4)第四次月考

  (5)第五次月考

  2、每次月考前一周出好试题,交备课组讨论,负责定稿交好试卷。

高三数学教学计划 篇9

  为了20xx年学生能充分迎接高考且能考出好成绩,我制定了高三数学教学计划。

  一、学情分析:

  高三(4)班是数学基础在年级5个班中排名第四,数学单科尖子生少,部分同学的基础知识基本方法尚未得到好的掌握,另有7—10人数学基础较弱,学习动力不足,遗忘速度较快,学习数学中有畏难情绪。

  高三(5)班作为文科实验班,学生数学基础相对较好,自觉性、自制力强,学习氛围好,有部分尖子生,但除2到3人对数学有比较强烈的兴趣外,其他同学并不十分冒尖。

  二、考情分析:

  (1)注重对“三基”的考查,重视课本;

  (2)注重学科内容的交融,各知识点的综合应用;

  (3)注重考查数学思想方法,通性通解,避免特殊技巧;

  (4)注重考查逻辑思维能力,重视能力考查;

  (5)注重考查学生创新能力,应用能力;

  (6)注重多层次多角度考查,试卷结构从易到难。

  三、主攻方向:

  (1)抓基础知识和基本方法,通性通法,如归纳,数形结合,分类讨论,分析,综合等;

  (2)研究《考试说明》,以说明为纲要,但不要忘记教材。

  四、具体措施:

  (1)研究考纲,多练习往年高考题,把握通性通法,重视基础知识,基本思想,重要定理定义,注意知识的横向和纵向比较,加强知识的交汇处选题。

  (2)引导学生用好错题本,查漏补缺。注意一题多解,举一反三,及时归纳,触类旁通。

  (3)严格训练学生规范答题格式。要学生平时做题时想明白,说清楚,做准确。

  (4)讲评试卷时精心准备,讲评到位。让学生弄清楚题目考查知识点,怎么审题,如何打开思路,关键步骤在哪,应用那些技巧和方法,了解学生典型错误。

  (5)加强自习辅导。对尖子生,重点临界生,本科临界生加强学习方法上,策略上,知识上还有心理上的指导,鼓励学生拼搏向前。

  (6)做好周密部署。第一轮讲基础,第二轮讲思想方法,追踪热点;第三轮做好热身训练。

关于高三数学教学计划模板汇总9篇】的相关文章:

有关二年级上册数学教学计划模

最新小学六年级下册品德与社会